
Unit 6: Sociopolitical cycles
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Much of life is cyclical

We’ve modeled a number of dynamical social systems in this course. 
However, one thing pretty much all the systems we’ve looked at have had in 
common is the tendency to evolve toward a stable equilibrium. Yet social life 
is pretty much never at equilibrium, despite what your friendly neighborhood
economist might tell you. Instead, much of life is cyclical. 

 A time of war, a time of peace
 A time to dance, a time to mourn
 A time to cast away stones, a time to gather stones together (etc)

In this last modeling unit, we’re going to explore a couple of models that 
allow for cyclical behavior. What is needed for cyclical behavior is feedback 
and delay. That is, the dynamics that give rise to growth must not only 
contribute to eventual decline, but must also do so with enough of a lag that 
growth does not simply reach a stable equilibrium, but exceeds the 
conditions for stability and must therefore decline, with decline also 
happening too rapidly to slow down in time for equilibrium. 

There are a number of mechanisms that can give rise to cycles. The most 
well known is the Lotka-Volterra predator-prey model developed in the 1920s,
which I discussed briefly in Unit 1. The purpose of this model was to explain 
the widely observed phenomenon among hunters and fur traders that 
populations of predator and prey species tended to repeatedly rise and fall 
on similar time scales. For example, Hudson’s Bay Company in Canada 
noticed cyclical patterns in the populations of the animals they hunted, like 
the Canada lynx and the snowshoe hare. Not only did both populations rise 
and fall, but their cycles seems to be locked in phase, and unexplained by 
external factors like climate. The model is based on coupled differential 
equations, but its assumptions are very simple: In the absence of lynx, hare 
will reproduce and increase in number. In the absence of hare, lynx will 
starve and decrease in number. When both are present, lynx will eat hare, 
increasing their numbers while diminishing the hare - their food source. 



Here, we will begin by exploring a related model: the ecological host-
pathogen model. This is a very simple model, but can lead to complex and 
counterintuitive outcomes. After exploring this simple model, we will explore 
one that is considerably more complicated but operates of similar principles: 
that of the rise and fall of empires. 

The host-pathogen model

CODE: hostpathogen.nlogo

In a sense, we’re going back to the first system we modeled: the spread of 
contagion. Then, we considered the time course of a contagion spreading 
through a population. We even considered that the host could recover and 
become uninfected. But we always assumed a fixed population of agents 
that neither died nor reproduced. And that’s fine for some problems. 
However, it’s now time to think a bit more ecologically. 

In this model, there is a host species that can become infected by a lethal 
pathogen. Spatial locations on a grid can represent either susceptible hosts, 
infected hosts, or empty locations onto which hosts can reproduce. 
Pathogens infect hosts. The pathogen spreads by passing from one host to 
another, and an infected host will eventually die from illness. If there are no 
nearby hosts, the pathogen cannot spread. Hosts reproduce when they are 
healthy, but not when they are infected. 



Our model assumptions lend themselves to other possible interpretations. As
noted, the model is similar to the Lotka-Volterra predator-prey model, and 
this similarity can be embraced more directly, with the hosts corresponding 
to prey and the pathogens to predators. In this interpretation, prey reproduce
in the absence of predators but are killed by predators, while predators 
reproduce after killing prey as long as another prey population exists nearby,
but they die in the absence of prey. Another interpretation is possible in 
terms of human populations: consumers and resources. Consumers use up 
renewable resources to reproduce, which depletes the resources. In the 
absence of resources, consumers perish, but resources renew in the absence
of consumers. For simplicity, however, I’ll continue to talk about this model in
terms of hosts and pathogens.

This is actually one of the simplest models to code. It’s so simple you may 
ask why I didn’t start the course with this model. One answer is that it allows 
me to point out that more complicated models aren’t always better or more 
sophisticated. You are not necessarily a better modeler if your models are 
more complex. Rather, strive for the simplest possible model to capture 
something interesting about your system. Another reason is that although 
the model assumptions are simple, its dynamics can appear quite complex. A
final reason is that the final model we will consider in this unit IS very 
complicated, and the host-pathogen model provides a useful bridge to it. 

For this model, we’ll use a square grid as we’ve been doing, with agents 
paying attention to their nearest four neighbors (up, down, left, and right). 
The cells of the grid will be the agents, which can take on one of three 
states: empty, susceptible, and infected. The model is pretty much fully 
defined by the rules governing the transitions from one state to another, so 
let’s take a closer look at how those transitions are formalized. 

Transition rules:
 Empty cells can become susceptible hosts. An empty cell can become 

a susceptible host if at least one of its neighbors is one, and so 
reproduces onto it. A susceptible host attempts reproduces onto a 
neighboring empty cell with probability r, the host reproductive rate 
(we say “attempts” because at maximum only one neighbor can be 
successful). In our model, all hosts are identical, so the probability of 
going from an empty cell to a susceptible host increases with the 
number of neighbors that are susceptible. The probability of 
transitioning is equal to one minus the joint probability that none of 
one’s susceptible neighbors attempts to reproduce. If nS is the number 
of susceptible neighbors (always between 0 and 4 in our model), the 
probability of transitioning from an empty cell to a susceptible host is:

P (0→ S )=1−(1−r )nS .
 Susceptible hosts can become infected hosts. A susceptible host 

becomes infected by one of its infected neighbors with probability τ ,



the transmissibility of the pathogen. As before, the probability of 
becoming infected increases with the number of infected neighbors, 
and is equal to one minus the joint probability that none of one’s 
infected neighbors transmits the pathogen. If nI is the number of 
infected neighbors, the probability of transitioning from a susceptible 
host to an infected host is: P (S→ I )=1−(1−τ )nI . 

 Infected hosts can become empty cells. Infected hosts die with a 
probability equal to v, the virulence of the pathogen. This transition 
probability does not depend on the state of one’s neighbors, only on 
being infected. 

Our model therefore has three parameters governing how the cells transition
from one state to another. In our version of the model, empty cells will be 
black, susceptible hosts will be green, and infected hosts will be red. We’ll 
initialize our model with a healthy population of susceptible hosts, when an 
infection breaks out in the middle.

SETTING UP THE MODEL
 reproductive-rate slider
 transmissibility slider 
 virulence slider 

INITIALIZATION
 Set all patches to green (susceptible)
 Infect a single patch in the center (red) 

DYNAMICS
 ASK PATCHES:

o Consider my current state and the state of my neighbors, and 
transition with appropriate probability as defined above.

PLOTTING: 
 We can see agent dynamics on the grid as cells transition between 

colored states. We’ll also plot the populations of susceptible and 
infected hosts over time.

RESULTS
 For a very wide range of parameter values, you can get neat spatial 

dynamic patterns. I encourage you to play around with this model. It’s 
fun to watch. 

 In some cases we can get rather substantial oscillations in the host and
pathogen populations. Use ( r=.01, τ=.15,v=.1 ). So what happens?  
The pathogen spreads from host to host. However, the virulent 
pathogen kills its hosts rapidly, limiting the number of new hosts 
available to infect, and fizzling out in local populations. This allows 



susceptible hosts to recover, providing new fertile soil for the spread of
infection. This manifests as cycles widespread infection and recovery. 

 Exploration of the model parameters provides some interesting and 
possibly counterintuitive results. For example, you might think that an 
increased rate of reproduction for susceptible hosts would provide for a
robust population and diminished rates of infection. However, the 
opposite is the case here. Higher reproductive rates for hosts actually 
favor the pathogen. To see this, increase the reproductive rate from r =
.01 to r = .1). This is because there are now more susceptible hosts to 
which the pathogen can spread, without empty regions persisting long 
enough to block pathogens from spreading before they kill their hosts. 
The spatial display shifts from the army of pathogens moving 
methodically over the landscape to a fierce boil of life and death. In 
this figure, I’ve increased r as the model runs. 

 So the rate of infection has increased with higher host reproduction. 
What we probably want is a less virulent pathogen so fewer hosts are 
killed, right? Again, the opposite is the case. Lower the virulence from 
v = .1 to v = .04. Infected hosts now outnumber uninfected hosts, and 
the number of empty cells has boomed. Instead of the infection 
spreading through a health population, it looks almost as if the 
susceptible hosts are fleeing the rampaging infection. This happens 



because infected hosts don’t die off as quickly, but stick around to 
infect more of their neighbors, enhancing the spread of the pathogen. 
In the figure below, I’ve continued the run above and decreased the 
virulence. If the virulence is lowered still more to v = .01, the 
population reliably collapses.

In general, this model has very rich dynamics for something so simple. I 
encourage you to play around with it. Nevertheless, it might not be clear how
what we’ve done applies to the sorts of things social scientists who are not 
epidemiologists are interested in. (I think it’s interesting, but your mileage 
may vary). So, as our final model in this course, let’s consider something a 
bit more ambitious: the rise and fall of empires. 

The metaethnic frontier theory

Much of the history of civilization—the last 5 to 10 thousand years of human 
history—can be viewed in terms of the rise and fall of empires. The general 
story that is often told is one of continued growth. After the agricultural 
revolution ~11,000 years ago, humans in many parts of the world became 
more tied to location and saw rapid increases in their population size. This 
newly-increased population facilitated division of labor and organizational 
challenges that were in turn well solved by larger and more hierarchical 
governance structures. However, people do not so readily give up their group
identities and join with other groups. Moreover, however, with growth also 
comes new types of scarcity, and that breeds competition. The result is war, 
which is widely thought to be a major driver of increased societal complexity.
The strong version of this claim can be summarized by the sociologist and 
historian Charles Tilly: “War made the state and the state made war.” With 
war comes conquest, and therefore we see not only the rise but also the 
dissolution of empires. But why exactly? Why would competition give rise to 
cycles of empires rather than more stable equilibria? We need to turn our 
ideas into models.



How do we model this sort of thing? History definitely seems far messier than
most if not all of the systems we’ve tackled so far. The short answer is that 
it’s very difficult. But difficult is not the same as impossible. If historical 
dynamics are subject to patterns and forces that recur with at least a 
modicum of regularity, then those dynamics are modellable. As always, we 
can start with a model that is drastically simple but nevertheless captures 
some of our key assumptions about how our system works. 

In his 2003 book, Historical Dynamics, the ecologist-turned-historian Peter 
Turchin attempted to explain some of these cyclical dynamics using what he 
called the metaethnic frontier model, which develops the idea that empires 
foster a superordinate or metaethnic identity among their citizens. The 
theory is actually an extension of one developed by the 14th century Arab 
scholar Ibn Khaldun. A key concept in the theory is asabiya, an Arabic word 
denoting a sort of social solidarity, with an emphasis on unity, group 
consciousness, and sense of shared purpose. Note that asabiya is a property 
of a population, not an individual. It is therefore a group-level trait, which I 
discussed at length in Smaldino (2014). Group-level traits are inherently 
challenging to model as emergent phenomena. So, like many other models, 
we will just take the trait as given. 

The theory proposes that polities that share borders with different polities 
will be bolstered in their sense of asabiya, which will be important for 
producing group-level phenomena like warfare and empire building. As 
empires expand their territories, their increased access to resources will 
drive further growth. However, as empires become larger, asabiya among 
those individuals who live far from the frontier will decline as a result of 
increased internal competition and a lack of exposure to external threats. 
Meanwhile, the constraints of expanded infrastructure mean that maintaining
a frontier becomes more difficult as the empire’s size expands. Eventually, 
an empire can be stretched too thin, and becomes susceptible to conquest. 

The theory says nothing about how the first empires form, nor does it 
account for other factors, like geography, topography, and technology. 
Nevertheless, it is grounded in pretty well-founded notions of human society,
and is clear enough to be formalized. Formalization will help us see how 
precise and plausible the theory is. 

The metaethnic frontier model

CODE: metaethnic.nlogo

The model works as follows. The smallest spatial unit in the model, a cell on 
a square grid, corresponds to a small regional polity or chiefdom. However, 
these polities can also become absorbed into a large territorial empire. Cells 



have an imperial index denoting the empire to which they belong; 
independent chiefdoms have an index of 0. 

Each cell has a level of asabiya, S, which represents the average degree of 
collective solidarity felt by its population, and is determined by the position 
of the cell relative to its imperial boundaries. Asabiya grows logistically to an 
upper limit of 1 if it is situated next to a boundary between two empires, or 
between an empire and a chiefdom. If the cell is not on a frontier, asabiya 
declines exponentially to 0. In determination of frontier status, the cell 
considers only its four nearest spatial neighbors. 

Territorial empires are characterized by two numbers: the number of regions 
they control (Ai), and the average asabiya of those cells, S-bar. At each time 
step, each cell considers an attack on its four neighbors. Cells that are part 
of empires never attack other cells in their empire. A successful attack 
occurs if the power of the attacking cell is sufficiently greater than the power
of the defending cell. 

The power of a cell depends on 3 factors: 
 Power increases with the asabiya throughout the empire, indicating the

importance of social solidarity in military victory.
 Power increases with the total size of the empire, indicating the total 

resources available to the military. 
 Power decreases with the region’s distance from the empire’s center, 

indicating the time and energy for communications and resources to 
travel. 

Formally, the power of a cell i belonging to empire j is calculated as follows: 

Pi=Ai Ś i exp[−d ij

h ]
where d ij  is the distance from the cell to the imperial center (the 
geographical center of the empire) and h is a parameter determining how 
rapidly power declines with increasing distance from the imperial center. If 
the difference between the attacker and defender cells is greater than delta-
p, the defending cell is taken over, and its imperial index 

Finally, an empire can collapse completely if its average asabiya becomes 
too low. If Ś i<Scrit , the empire is dissolved and all its cells become 
independent chiefdoms. 

Our primary question for this model is: do we observe cycles of the rise and 
fall of empires that look anything like those seen historically? This model 
involves considerably more coding than previous models. As with the 



previous models, I have provided the code; this one may take a little more 
work to understand than the others. In general, some computational models 
are quite complicated (with some considerably more complicated than this 
one!). It’s important to consider how many assumptions are necessary, and 
to always make the model as complex as necessary, but not more so. Due to 
the complexity of the model, I won’t go through most of the parameters, but 
rather leave that an exercise for the curious student (I will adopt parameter 
values used by Turchin 2003 unless noted otherwise). 

SETTING UP THE MODEL
 allow-collapse? switch. This controls whether empires collapse if their 

average asabiya gets too low, or instead diminish only through 
conquest. 

 power-decline slider. This is h in the model. Power declines more 
rapidly with smaller h. 

INITIALIZATION
 Each patch is initialized as a chiefdom with a baseline asabiya. 
 The four patches in the corner of the grid are consolidated into an 

empire. 

DYNAMICS
 Update each cell’s asabiya based on its proximity to a frontier. 
 Calculate stats of area, asabiya, and power for each empire. 
 Calculate the power for each cell. 
 ASK PATCHES

o Consider attacks on all neighbors. Update empires accordingly. 
 Collapse any empire in which asabiya has fallen too low. 

PLOTTING: 
 Empires will be assigned colors, which will spread on the spatial grid. 
 Plot the area of each empire over time as it appears. 

RESULTS



 When we run the model, the first thing that we observe is that, after 
initial growth by the first empire, it is eventually attacked by a small 
chiefdom and diminishes as other empires rise. We then get very clear 
cyclical behavior as empires rise and fall. 

 Changing the value of h, the power-decay, has strong effects on 
political stability. When h is smaller, power decays very rapidly with 
distance from the imperial center, which should curb the growth of 
empires. It does this, however because it also does not allow empires 
to grow very powerful, it also increases cultural stability. We get the 
emergence of several moderately-size empires that are relatively 
stable with minor border skirmishes. (h = 0.7). This indicates that 
technologies that improve travel and communication over long 
distances can also lead to larger but less stable societies.   

 When h gets larger, power declines more slowly and empires can grow 
quite large. As they grow to equilibrium, however, they become highly 
unstable, and we get very rapid change over, and sometimes 
population collapse. For example, when h = 3, we see the cyclical rise 
and subsequent collapse of very large empires, sometimes leading to 
the complete collapse of all existing empires (the model does not have 
a mechanism for the formation of new empires when none exist). This 
further indicates how mobility and communication technologies might 
contribute to sociopolitical stability.

 If we no longer allow empires to collapse because of low asabiya (back 
to h = 2), we still get cycles of growing and shrinking empires, but it is 
often the same few empires competing over and over, with very few 
new empires emerging. This indicates that, if the other assumptions of 
the model can be considered valid, that the collapse of large empires 
due to non-military factors is essential to understanding historical 
dynamics.   

Does the model show that the Metaethnic Frontier theory 
is right? 



Turchin (2003) notes a strong similarity between the model output and the 
actual historical dynamics of the empires of East and Central areas over a 
600 year period. I’ve reproduced his Figure 4.4 below This is a nice 
demonstration of possibility: our assumptions generated the sort of dynamics
seen empirically. 

That said, proof of possibility is not proof of necessity. The computational 
social scientist Josh Epstein has said, in promoting the use of models like this
one, that “If you didn’t grow it, you didn’t explain it.” I agree that this is a 
strong argument in favor of modeling. However, the inverse does not 
necessarily follow. If you did grow it, you have not necessarily explained it, 
only failed to reject a possible explanation. Turchin himself is very clear on 
this point, and it’s worth quoting him at length here: 

“The qualitative similarity between historical polity trajectories and the
simulated ones does not, of course, constitute any ‘proof’ that the 
theoretical and empirical dynamics are driven by the same 
mechanisms. In general, for any potential pattern there are an infinite 
number of mechanisms that can produce it: the mapping between 
mechanisms and patterns is many to one… Nevertheless, the 



observation that several features of the model’s output match the 
observed dynamics is, at the very least, an encouragement to further 
theory developing and testing.” (Turchin 2003, p. 71). 

Obviously, this model is far from a complete theory of historical dynamics. 
However, the simple model shows us that the metaethnic frontier idea 
probably represents a plausible theory, and can indeed generate patterns 
that approximate what we see in history, at least in some places and at some
scales. More generally, social dynamics are complicated, and models like this
one give us a foothold to translate our verbal theories into concrete 
dynamical ideas. 

Further directions

 The evolution of contagion. If one posits a simple mixed population of 
near-infinite size and considers the evolution of pathogen virulence, 
one must conclude that pathogens should evolve to be as contagious 
as possible – that is, having the highest possible transmissibility, as 
they will spread farther and faster. However, this conclusion does not 
hold in a spatially structured population of finite size. By allowing traits 
like transmissibility to mutate and evolve, Goodnight et al (2008) 
showed that the consideration of population structure in the spatial 
model yields the prediction that strains that are overly transmissible 
will soon exhaust their local supply of hosts and perish, whereas more 
moderately transmissible strains will persist. 

o Goodnight C, Rauch E, Sayama H, De Aguiar MAM, Baranger M, 
Bar-Yam Y (2008) Evolution in spatial predator-prey models and 
the ‘prudent predator’: The inadequacy of steady-state organism 
fitness and the concept of individual and group selection. 
Complexity 13(5): 23–44.

 Getting more complicated with historical cycles. Turchin and colleagues
have continued to develop theories of historical dynamics, adding 
factors including environmental factors like oceans and mountains, 
technological innovation, and conflict among elites to refine their 
theory and better fit it to available historical data. The models have 
also inspired more focused collection of historical and archaeological 
data with an aim to better parameterize dynamic models.  

o Turchin P, Currie TE, Turner EAL, Gavrilets S (2013) War, space, 
and the evolution of Old World complex societies. Proceedings of 
the National Academy of Sciences 110: 16384–16389.

o Turchin P (2016) Ages of discord: A structural demographic 
analysis of American history. Beresta Books. 

 Growing artificial societies. There have been a number of efforts to 
model complex historical dynamics with complex, realistic agent-based



models. One of the first was Epstein and Axtell’s 1996 book Growing 
artificial societies, which includes a careful study of their stylized 
Sugarscape model. This has been followed by many studies by social 
scientists and archaeologists to use models to better understand our 
past. 

o Epstein JM, Axtell R (1996) Growing artificial societies. MIT Press. 
o Epstein JM (2006) Generative social science: Studies in agent-

based computational modeling. Princeton University Press. 
o Crabtree SA, et al. (2017) How to make a polity (in the central 

Mesa Verde region). American Antiquity 82: 71–95.
 Autocatalysis. The models we explored in this unit share principles with

a classic sort of model in the physical and biological sciences: those of 
autocatalytic processes. Many of these models consider substances 
that are characterized by local activation and long-range inhibition. 
That is, the substance is autocatalytic in close range but faces 
(indirect) inhibition by increased distance from the central zone of 
influence. Such forces can generate churning cycles and pattern 
formation. Such models are widely used to explain processes of 
chemical and biological pattern formation. 

o Kondo S, Mura T (2010) Reaction-diffusion model as a framework 
for understanding biological pattern formation. Science 329: 
1616–1620.

o Jones J (2010) Characteristics of pattern formation and evolution 
in approximations of Physarum transport networks. Artificial Life 
16: 127–153.

Exercises

 Space is the place. Play with population density in the host pathogen 
model. What if a proportion of cells are initially empty. Does this affect 
how often the pathogen dies out? What is some cells are not only 
empty, but unfillable, representing barriers in physical or network 
space? 

 Evolving contagion. Adapt the host-pathogen model so that 
transmissibility is an evolvable trait (see Goodnight et al. 2008 for 
suggestions how to accomplish this). Do pathogens evolve to be as 
transmissible as possible? Why or why not? 

 Making more room. In the metaethnic frontier model, we used a 21 x 
21  grid. How does the overall size of the territory (in terms of 
habitable regions) influence the spread of empires? What if make the 
grid considerably large, like 51 x 51? How does this effect our 
conclusions about the number of empires at one time, and the 
persistence of those empires? 



 Thinking through assumptions. Consider the metaethnic frontier model.
Describe the model’s assumptions. Why do those assumptions lead to 
cycles (or fail to do so)? 

 Possibilities. Imagine you had advanced the metaethnic frontier model 
so as to be able to accurately model the rise and fall of modern states. 
How would you calibrate that model? Would it be possible to make 
concrete predictions? 

-----------------------------------------
CREATIVE COMMONS LICENSE
This text is distributed by Paul Smaldino under a Creative Commons License:
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

https://creativecommons.org/licenses/by-nc-sa/4.0/

