
Unit 5: Coordination and norms
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The problem of coordination and norms

Cooperation is not the only problem to be solved for social cohesion. Once 
we have decided to cooperate, we have to figure out how to do so. How do 
we best cooperate? Who are the best cooperators for me? If we don’t 
understand one another’s intentions, don’t have the same goals, or don’t do 
things the same way, cooperation can be impeded. Doing things the same 
way is what we will call coordination. 

Language is a prominent example of coordination—many of the words we 
use for things are arbitrary, but unless we use the same words for a given 
situation, we are liable to have a misunderstanding (and of course this can 
occur regardless). In most of the world, cars and trucks are driven on the 
right side of the road, though in the UK, Australia, and Japan, cars are driven 
on the left. It doesn’t really matter which side you drive on, only that 
everyone does things the same way.

The word “norm” is used a few different ways in the social sciences, but I’ll 
use it here to connote behaviors that facilitate coordination. Norms differ 
from one population to another, and can also appear fairly arbitrary. 

Sometimes norms can serve to signal to others a larger suit of norms that 
are harder to observe. If you go to academic conferences and are male, you 
are likely to wear a tie if you are an economist, but extremely unlikely to do 
so if you are an anthropologist. The tie, or lack thereof, doesn’t serve any 
function directly, but it signals to others the sort of person you are likely to 
be. Likewise, norms often develop among communities or groups of friends 
that enable rapid communication between their members, but are baffling to 
outsiders. 

Although norms may be arbitrary, that doesn’t mean that all norms are 
always just as good as any other norms. Some, like smoking cigarettes 
together after vigorous activity, can be directly harmful. Others norms can be
prosocial, and improve the collective good. For example:

 Rules against murder and assault encourage civil order, and make us 
feel relatively secure. 



 Property rights allow encourage productive effort and innovation.
 Well-managed taxation provides roads, schools, and other public 

goods. 
 Product standards, building codes, and rules of professional conduct 

allow more efficient commerce and protect citizens from harm. 
 Norms governing the filling of political offices reduce the chances of a 

civil war over political disputes (hopefully)

In any given domain, there are many possibilities for exactly what norms to 
put in place. Drive on the right or the left? Speak English or German? Wear a 
business suit or yoga pants and flip flops? Allow disputes to escalate, or 
prohibit violence? Some norms may be more in line with basic human 
psychology and practicality than others (for example, we can probably take 
driving in swirly spirals off the table), but in other cases it’s clear that many 
options are possible. Human cultural diversity is a testament to this fact. 

So, how might norms spread or dominate? In this unit, we’ll tackle this 
question with a series of models. In a sense, this question combines our first 
two units on the spread of behaviors or opinions with the previous unit, in 
which the utility of a behavior depended on the behavior of others. We’ll 
again use an evolutionary framework with success-biased transmission. That 
is, we’ll assume that individuals interact with others using particular 
strategies, and that those interactions lead to some payoffs. After, 
individuals will have the opportunity to observe others and switch to a 
strategy that is more successful. Now, we could also use other social learning
strategies, such as a conformist strategy in which agents copy the most 
common norm. This sort of thing is left as an exercise. 

To start, let’s consider the example in which two norms compete and neither 
has any intrinsic advantage. 

Norms with symmetric payoffs

CODE: coordination_simple.nlogo

When considering competition among strategies, it’s simplest to start with 
only two. Let’s imagine a population in which everyone uses one of two 
norms in their social interactions. In this simple coordination game, each 
agent uses either norm 1 or norm 2 in their interactions. This is not a 
cooperative dilemma; it is always better to coordinate than not, and even 
non-coordination is cooperative and therefore yields a positive payoff. In fact,
we can assume that in this scenario, the dilemma of cooperation has been 
solved, and now the issue is how to maximize the benefit between potential 
cooperators. Here we consider a symmetric coordination game, in which 



coordination on norms always yields a benefit δ  over non-coordination. 
Without any loss of generality, we can set the baseline payoff to 1. This 
yields the payoff matrix below (with the payoffs written for the row player): 

Norm 1 Norm 2
Norm 1 1+δ 1
Norm 2 1 1+δ

Individuals in the model have many interactions with members of their 
community, during which they accumulate payoffs. In the prisoner’s dilemma
simulations of the last unit, we allowed individuals to play with a small 
number of individuals to accumulate payoffs, and then always copy the 
strategy of their best-performing neighbor. We could do that here as well. 
However, it’s also important to note that this is a somewhat arbitrary 
modeling assumption about how interactions and observations are 
structured. For the sake of exploring, we’ll try a different set of mechanisms 
here. 

Let’s assume that each individual has a lot of interactions in which there is 
an opportunity to coordinate. In this case, we don’t necessarily need to 
simulate all of these interactions. Instead, if we know the distribution of 
strategies in the population, we can simply calculate the expected payoff 
under the assumption of random interactions. Recall that agent-based 
models are great for exploring assumptions of non-random interactions, but 
it’s also important to establish a baseline.    

To calculate an agent’s payoff, we just need to know the proportion of other 
agents who do and do not share the agent’s norm. Let n1 be the number of 
agents who use norm 1, and n2 be the number of agents who use norm 2, in 
a population of N (so n2=N−n1 ). The payoff to an agent who uses norm 1 
is determined by considering the expected payoff over time if interaction 
partners at random from the population: 

V 1=
n1−1

N−1
(1+δ )+

n2

N−1
(1)

Which reduces to: 

V 1=1+
(n1−1 )
N−1

δ

and similar for V2. This makes sense and is intuitive if you examine it a bit. It 
says that the payoff is the baseline of 1 plus the coordination bonus times 
the proportion of the time the agent’s interaction partner uses the same 
norm as the agent. 



Now, it comes time for imitation. Each agent will select one other agent at 
random, and compare their strategies and payoffs. If we stuck with the 
assumption we used in the previous unit, of deterministically copying the 
best, then whichever norm was more popular would be instantly adopted by 
everyone. This is a valuable thing to realize. In the PD game, focusing only 
on local interactions influenced and slowed the spread of behaviors. Here, we
use the expected payoff, so we ignore the heterogeneity added by local 
interactions. Instead, we will add heterogeneity another way. Instead of 
assuming deterministic copying, we will make what is probably a more 
realistic assumption: that copying is probabilistic. 

Here’s why I think probabilistic copying makes sense. If your payoff is much 
higher than mine, I should be very likely to copy you. If your payoff is only a 
little higher than mine, I should be more likely to copy you than not, but also 
more likely to stick with my current strategy. And if your payoff is worse than 
mine, I should generally stick with my current strategy, but every now and 
then I might make an error in judgment or want to explore, so I will still 
occasionally copy a worse strategy. Luckily, there is a functional form that fits
this description nicely: the sigmoid function. 

Assume agent i observes agent j. If agent i has payoff xi and agent j has 
payoff xj, then the probability of i adopting j’s strategy is: 

P(copy )=
1

1+exp[−α (x j−xi ) ]

where α  is a scaling parameter that controls how quickly small differences 
become important. For simplicity, we’ll use α=1 . OK. Now let’s go to the 
code. As we’re done before, we’ll use colors do designate the differences 
between agents. Norm 1 agents will be yellow, norm 2 agents will be blue. 

SETTING UP THE MODEL



 init-norm1 slider
 coordination-benefit slider 
 turtles-own [norm1?, payoff] 

o norm1? is a Boolean variable that will be true if the agent uses 
norm 1, false if they use norm 2.  We could instead use integers 
rather than a Boolean switch to allow for more than two 
strategies in future versions. 

INITIALIZATION
 Each patch of the grid will sprout a turtle. With probability init-norm1, 

the agent uses norm 1, otherwise norm 2. Norm 1 agents are yellow, 
norm 2 agents are blue. 

DYNAMICS
 Stop if one norm completely dominates. 
 Calculate payoffs for norm 1 and norm 2 agents, and assign those 

payoffs accordingly. 
 ASK TURTLES:

o Choose another agent to observe at random. 
o Copy the other agent’s norm with a probability derived from a 

sigmoid function based on the difference between payoffs. 

PLOTTING
 The agents’ colors will represent their norms, and we can see the 

change happen on that level. We will also plot the frequency of agents 
using norm 1 in the population over time. 

RESULTS
  If there is no benefit to coordination ( δ=0 ), both norms can persist 

indefinitely, as the frequency of each norm over time is essentially a 
random walk. In the long run, one norm will probably go to fixation just
by chance – this is called neutral drift – but it can take a very long time.

 As soon as there is any benefit to coordination ( δ>0 ) the more 
common norm will almost always spread. There is some uncertainty 
when they start out at similar numbers due to stochasticity, but 
otherwise the more common one is favored.

 So when there is a benefit to coordinating, the more popular norm 
should spread. If uncommon norms persist, there must be mechanisms
beyond coordination, or the assumption of random interactions may 
not be met. For our purposes, we have established a baseline model 
that illustrates dynamics of norms when those norms are completely 
arbitrary and neither is intrinsically better. Now, let’s relax that 
assumption, and consider the case where one norm is clearly superior 
to another. Will it spread?   



Group-beneficial norms

CODE: coordination_asymmetric.nlogo

Things get more interesting if we consider two competing norms in which 
one norm is prosocial – that is, better for the group – but carries a cost when 
rare, since others will fail to coordinate. Consider the following payoff matrix 
for the asymmetric coordination game. 

Norm 1 Norm 2
Norm 1 1+δ+g 1−h
Norm 2 1+g 1

Norm 1 here is the prosocial norm. Those employing norm 1 confer a benefit 
g on everyone, regardless of their norm. There is also an additional benefit
δ  of coordinating on norm 1. Coordinating on norm 1 is obviously 

preferable to coordinating on norm 2, and it is clear that if norm 1 is 
common, anyone using norm 2 should switch (to receive the additional 
benefit δ ). However, to make things more interesting, norm 1 also carries 
a cost when rare. Norm 1 may be costly to implement, it may be 
burdensome to execute alone, or it may be actively punished by non-users. 
All these are real possibilities for uncommon behaviors. We’ll model this by 
imposing a cost h to employ norm 1 when one’s partner uses norm 2. 

It’s easy to see that the prosocial norm should persist when very common. In
the language of evolutionary game theory, norm 1 should resist invasion by 
rare norm 2 agents. Our question, then, will be how costly prosocial norms 
can spread when rare? To tackle this, let’s update our model.

SETTING UP THE MODEL
 norm1-group-benefit slider (g)
 norm1-self-benefit slider ( δ )
 norm2-deviance-cost slider (h)

INITIALIZATION
 Each patch of the grid will sprout a turtle. With prob init-norm1, the 

agent uses norm 1, otherwise norm 2. Norm 1 agents are yellow, norm 
2 agents are blue. 

DYNAMICS
 Stop if one norm completely dominates. 
 Calculate payoffs for norm 1 and norm 2 agents, and assign those 

payoffs accordingly. Use updated payoff matrix. 
 ASK TURTLES:



o Choose another agent to observe at random. 
o Copy the other agent’s norm with a probability derived from a 

sigmoid function based on the difference between payoffs. 

RESULTS
 Let’s start out with some arbitrary values. Let δ=g=1 , and h = 0.5. If

we let the initial frequency of norm 1 be init-norm1 = .5, we see that 
the prosocial norm spreads every time. Even if we lower its initial 
frequency to 0.4, it spreads every time! Huzzah! The prosocial norm 
spreads even when rare! …Or does it? Keep lowering its initial 
frequency. You’ll find that right around an initial frequency of 0.33, 
norm 2 starts to occasionally dominate. If init-norm1 ≤ 0.3, the 
prosocial norm almost never spreads. If you play around with the 
payoffs, you’ll find that this threshold moves around, but there is 
usually some threshold below which norm 2 spreads. Let’s take a look 
at why. 

 In general, I’ve avoided mathematical derivations for this course and 
stuck to insights that can be gleamed from simulations. However, in 
this case it is pretty easy to calculate just where the threshold is, so 
we’ll do it. This will be an approximation, for which we will assume a 
large enough population where the difference between N and N – 1 is 
negligible. Let the proportion of agents using norm 1 be p, so the 
proportion using norm 2 is 1 – p. The expected payoff to an agent using
norm 1 is the proportion of times it receives a coordination benefit plus
the proportion of times it pays a non-coordination cost,
V 1=p (1+δ+g )+ (1−p ) (1−h ) .  The payoff to a norm 2 agent is similarly 

based on our payoff matrix: V 2=p (1+g )+(1−p ) (1 ) .  The threshold 
separating when each norm will spread will be the point at which these
two payoffs are equal, so that below the threshold norm 2 will be 
dominant and above it norm 1 will be. Stretch out your algebra 
muscles and try it! Setting the two payoffs equal and solving for p 
yields a threshold of p¿

=h/(δ+h) . 
 We can add a monitor that automatically calculates and displays the 

threshold based on our model parameters. For the parameters we used
in our initial exploration, we see that the threshold is p* = 0.3333, 
exactly what we observed. 

 I ran 100 simulations under these parameter values for different initial 
frequencies of norm 1, plotted the proportion of them in which norm 1 
dominated. You can see quite clearly the dividing line.  



 A few things are illuminated by the calculation of p*. First, the 
threshold for norm 1 to spread is lower when the benefit of 
coordinating on norm 1 is stronger. Second, that threshold is higher 
when the cost of using norm 1 with a norm 2 agent is greater. These 
results make sense. Even rare interactions may be attractive if they 
have a high payoff, but these benefits must outweigh the costs of non-
coordinating interactions. 

 The third thing we learn is that the prosocial benefit generated by 
norm 1, g, is completely irrelevant to its spread. It can be very large, or
it can be zero, and it will no influence on the spread of norms in this 
model. The reason is apparent when we compare the equations for the 
payoffs. Norm 1 agents provide the benefit g to everyone in the 
population, so g plays no role in differentiating the payoffs of the two 
norms. This indicates that to some extent we have modeled a norm 
that is better during coordination but costly when rare. Its prosocial 
nature is an afterthought.  Two comments on this point. First, we are 
often interested in how norms that are better for the population but 
costly when rare can spread, even if they are not explicitly altruistic. 
Second, the model does teach us something about the spread of 
prosocial norms, which is that their spread probably depends primarily 
on the costs and benefits of coordination and non-coordination rather 
than the group-level benefits they confer. 

A major thing we’ve learned from this model is that if a prosocial (or better) 
norm is not sufficiently common at the outset, it will not spread, but instead 
will disappear. This is a little depressing. What if we introduce a superior 
norm that, if adopted, will make us all better off? The model suggests that, 
unless a sufficiently large faction can be coerced to adopt the new norm to 



demonstrate its clear superiority, it will fizzle and die. Is there any other hope
for the spread of new beneficial norms? 

Yes. In fact, there are several possible mechanisms for the spread of rare 
norms, but we will just tackle one. We’ve assumed so far, in all our models 
actually, that we are dealing with a single population of interacting agents. 
However, humans are structured into groups, who often interact primarily 
with other group members even if they occasionally interact with non-group 
members. Might group structure play a role in the spread of norms? 

Group-beneficial norms in a structured population

CODE: coordination_2groups.nlogo

Let’s consider not one but two groups. Within each group, things will work as 
before. Individuals will interact with group members, accumulate payoffs, 
and then observe another agent for success-biased social learning. If the 
groups never interact in any way, we will simply have two exact copies of our
previous model. However, individuals do sometimes observe those from 
other groups. This can happen through a variety of mechanisms, including 
travel, trade, and intermarriage. If a member of another group uses a 
different norm and is doing demonstrably better than you, might you 
consider adopting that norm? This is the situation we consider here. The 
mechanism of success-biased copying in a group-structured selection 
provides the basis for a type of cultural group selection, in which group 
structure facilitates the spread of group-beneficial norms (other mechanisms 
include migration and military conquest; see readings in further directions). 

Given that norms may arise in a variety of ways, it is not unreasonable to 
assume that different groups will initially converge on different norms for 
fairly arbitrary reasons. We have seen that, once a dominant norm is 
established, it can be difficult for a new norm, even a superior one, to spread
within a population. However, there may also be variation between groups, 



and if that variation is observable, a norm may be able to cross group 
boundaries. 

To set up this model, we will extend our grid and divide it into two, so that 
group on the left will be separate from the group on the right, and we will 
assign each agent a group ID in addition to a norm. In principle, the model 
can be extended for an arbitrary number of groups. 

SETTING UP THE MODEL
 init-norm1-group1 slider
 init-norm1-group2 slider
 prob-outgroup-observation slider
 turtles-own [groupID] (0 or 1)

INITIALIZATION
 Double the width of the grid, and set up patches into two territories. 
 Each patch of the grid will sprout a turtle. With prob init-norm1, the 

agent uses norm 1, otherwise norm 2. Assign groupID based on which 
territory the agent is in. Norm 1 agents are yellow, norm 2 agents are 
blue. 

DYNAMICS
 Stop if one norm completely dominates. 
 Calculate payoffs for norm 1 and norm 2 agents, and assign those 

payoffs accordingly. Use updated payoff matrix. 
 ASK TURTLES:

o Choose another agent to observe at random. With probability 
prob-outgroup-observation, observe an agent from the out-
group. Otherwise observe an agent from the in-group. 

o Copy the other agent’s norm with a probability derived from a 
sigmoid function based on the difference between payoffs. 



RESULTS
 Consider our parameters from our previous analysis. Let δ=g=1 , and

h = 0.5. Set the initial frequency of norm 1 to 60% in group 0 and 10% 
in group 1. If prob-outgroup-observation is 0, then what happens is 
predictable. We know that the threshold for norm 1 to spread is p* = .
33. So norm 1 will take over in group 0 and die out in group 1. 

 Now, increase prob-outgroup-observation to .01. We see that 
individuals in group 1 do occasionally adopt it, but because most 
observations are still within-group, and norm 1 agents do poorly in 
group 1, the norm doesn’t spread. If we increase prob-outgroup-
observation to .02, however, we see larger oscillations, and then… 
bam! Norm 1 spreads through. So even a small amount of outgroup 
interactions can facilitate the rapid spread of group-beneficial norms 
from one group to another. Unsurprisingly, it can also be shown that 
the higher the value of p*, the more outgroup observation is required 
for the norm to spread from a group where it is common to one where 
it is rare. 

If individuals sometimes observe others from other groups and are willing to 
switch to any more successful strategy, then the group beneficial norm can 
spread with even a small amount of outgroup observation. Note here that all 
interactions still occur within one’s group. The assumption here is that 
individuals are willing to consider another’s success as a reason to copy 



them, even if they are successful in a different social context. Based on the 
psychological evidence from humans, this seems like a reasonable 
assumption. 

Another strong assumption of this model is that both norms and their 
associated payoffs are easily observable. This may not always be the case. 
As many who have entered a new cultural environment know, the right way 
to behave isn’t always obvious, and it’s certainly not necessarily clear 
precisely which norms lead to a group’s success when many candidates are 
present. For a striking example, consider the cargo cults of the Pacific in the 
aftermath of World War 2, who constructed wooden air traffic control towers 
and performed pseudo-military drills, emulating US soldiers in hopes of 
attaining similar levels of material wealth.  

Further directions

 Cultural group selection. Although selection at the level of the group is 
controversial when considering the evolution of genetic traits, group 
selection is well established for cultural traits due to the normative 
nature of human psychology and culture. The model considered in this 
unit is just one approach to understanding how group structure and 
competition facilitates the evolution of cultural practices. For reviews 
and other approaches, see the following papers. 

o Henrich J (2004) Cultural group selection, coevolutionary 
processes and large-scale cooperation. Journal of Economic 
Behavior and Organization 53: 3–35.

o Boyd R, Richerson PJ (2010) Transmission coupling mechanisms: 
Cultural group selection. Philosophical Transactions of the Royal 
Society B 365: 3787–3795.

o Richerson PJ et al. (2016) Cultural group selection plays an 
essential role in explaining human cooperation: A sketch of the 
evidence. Behavioral and Brain Sciences 39: e30.   

 Signals and markers. Many norms of behavior are opaque until one is 
already engaged in interaction. If a person could express signals about 
their likely normative portfolio, those signals would enable more 
effective assortment on norms and more efficient coordination. An 
early treatment of this idea was provided by the economist Michael 
Spence (1973) in the context of how employers evaluate potential 
employees. McElreath et al. (2003) later showed that if individuals 
preferred to interact with those who shared arbitrary markers, markers 
can emerge to be associated with particular norms. Signaling also can 
facilitate the persistence of multiple norms in a population, with the 
norm-marker association strongest near the boundaries between 
populations who hold differing norms. 



o Spence M (1973) Job market signaling. The Quarterly Journal of 
Economics 87: 355–374. 

o McElreath R, Boyd R, Richerson PJ (2003) Shared norms and the 
evolution of ethnic markers. Current Anthropology 44: 122–130.

 Noisy signals and intragroup variation. Within populations, there may 
still be variation, but avoiding those who don’t share all your norms 
isn’t always feasible. Within a society, we sometimes have to interact 
with those who don’t share our norms, and we may want to avoid 
signals that highlight our differences. My colleagues and I considered 
two types of signals – those sent overtly and covertly – and showed 
that covert signals should be dominant in cases where assortment is 
imperfect and uncertainty about shared norms between strangers is 
both high and consequential. Related work by Hoffman et al. has 
explored conditions for intentionally noisy signals in which the act of 
obscuring is itself ascribed value. 

o Smaldino PE, Flamson TJ, McElreath R (2018) The evolution of 
covert signaling. Scientific Reports 8: 4905.

o Hoffman M, HIlbe C, Nowak MA (2018) The signal-burying game 
can explain why we obscure positive traits and good deeds. 
Nature Human Behaviour 2: 397–404.

 Language and conventions. Much of communication involves an issue 
of coordination – the need for linguistic signals to represent similar 
things to both sender and receiver. Although language is in reality 
much more than a set of signaling conventions — its most important 
feature perhaps being the flexibility to convey almost any idea—its 
conventional aspect is nevertheless important to understand. Models 
have shown how repeated coordination games can give rise not only to
shared signals, but shared categories, as with the conventions for color
names or safe vs. dangerous foods. 

o Cangelosi A, Parisi D (1998) The emergence of a ‘language’ in an 
evolving population of neural networks. Connection Science 10: 
83–97.

o Puglisi A, Baronchelli A, Loreto V (2008) Cultural route to the 
emergence of linguistic categories. Proceedings of the National 
Academy of Sciences 105: 7936–7940.

o Contreras Kallens PA, Dale R, Smaldino PE (2018) Cultural 
evolution of categorization. Cognitive Systems Research 52: 765–
774.

Exercises

 When in Rome. Adapt the first model of symmetric coordination so 
that, instead of success-biased social learning, an agent observes 
several other agents and adopts whichever norm is more common 
among those observed. Does this assumption of conformity change 



any of your conclusions about either which norm will spread or how 
quickly it will do so? Consider how quickly norms spread as a function 
of the number of agents being observed at a time. 

 Changing norms is hard. Consider the emergence of a more group 
beneficial norm b in a population where most people use norm a. This 
second norm confers a lower benefit than would norm b if it were 
common, but all norms do poorly when they are rare. Perform 
simulations in which a proportion p of the population begin to employ 
norm b. How large does p have to be for norm b to spread? Do your 
results track our calculation of p*? 

 Group, there it is. Now consider our group-structured model, in which 
one group uses inferior norm a and the other group uses superior norm
b. Let each individual observe a member of the other group with 
probability m. Show that sufficient out-group contact can facilitate the 
spread of group-beneficial norms, and that the amount of contact 
needed varies with the costs and benefits of each norm. 
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