
Unit 4: Cooperation
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The problem of cooperation

There are obvious benefits to helping one another and working together. All 
the major transitions in the evolution of life on earth have involved new 
cooperative structures (e.g., multicellularity, social animals, symbolic 
communication). Through cooperation, humans can accomplish amazing 
things. It’s clear that our success as a biological and cultural species comes 
from the things we can do together. 

However, it’s not obvious how cooperation can be sustainable. If everyone 
works to benefit others, those that free ride on others get the benefit without
paying the cost. How can cooperation emerge in a population? Once present,
how can it be maintained?

A simple model for this principle problem of cooperation is a two-player 
game called the prisoner’s dilemma. Here’s the payoff matrix, with the 
payoffs shown going to the row player. Each player can either cooperate or 
defect. Cooperation incurs a cost, c on the cooperator, and confers a benefit,
b, on the recipient, where b > c. This requirement makes the game positive 
sum: mutual cooperation creates a positive benefit for both parties. Here is 
the dilemma: mutual cooperation is better than mutual defection, but the 
best move is always to defect in a single game. 

Cooperate Defect
Cooperate b – c –c

Defect b 0

We can reframe the problem of cooperation in terms of the prisoner’s 
dilemma game: How do we get the emergence and maintenance of 
cooperation in a population of individuals playing the prisoner’s dilemma? To 
answer this question, we need to talk a little bit about evolution. 

Evolutionary dynamics



Our analysis will be based on the logic of natural selection. Evolution by 
natural selection requires three components: 

1. There must be variation.
2. That variation must have consequences for the survival and/or 

reproduction of individuals (selection). 
3. The variation must be heritable. 

Here we will assume that individuals use behavioral strategies related to how
they play the prisoner’s dilemma game (meaning they have fitness 
consequences), and that those strategies both vary between individuals and 
are heritable. I think it’s fairly clear that if there are multiple strategies, there
is variation. However, it’s worth saying a little more about selection and 
heritability. 

Transmission of traits from one organism to another can occur via genes or 
through social transmission – that is, by learning. (There are other ways, 
including inheritance of environmental constraints on development, but I 
won’t discuss these here). In the case of human cultural traits, we are often 
talking about social transmission. Luckily, several transmission mechanisms 
are roughly equivalent in our model. If individuals copy their parents, then 
the individuals who have the most offspring will propagate their traits as if 
they were genetically determined.  This sort of vertical transmission of 
social information can include active teaching as well as less conscious 
processes. Alternatively, consider the case where individuals actively assess 
which individuals to learn from. If certain behaviors lead to the accumulation 
of desirable resources and individuals can assess differences in resources 
and imitate the strategies of successful individuals, then again, the most 
successful traits will propagate in the population. This is success-biased 
transmission. Either way, the dynamics of the model work out the same: 
successful individuals will preferentially transmit their strategies.

We’ll use modeling to explore how two or more strategies behave when they 
interact in a population. In particular, it will be interesting to look at how a 
strategy behaves both when it is already common in the population, as well 
as when it is rare. The latter question is particularly important if we are 
interested in social change: can a strategy spread when only a few 
individuals employ it. This is the fact of frequency dependence: the fitness of
a strategy can depend on the frequency of it and other strategies in the 
population (the rate at which it plays itself vs. other strategies). In our case, 
this means that the utility of being a cooperator depends on the prevalence 
of other cooperators. After all, mutual cooperation can outperform mutual 
defection, but defectors can succeed by exploiting cooperators. A 
mechanism which makes cooperators more likely to interact with one 
another could help to make cooperation sustainable. Let’s explore this idea 
with a model. 



A simple model with assortment

CODE: PD_simple.nlogo

Just like in the previous unit, we’ll use a square lattice structure, in which 
agents interact with their four nearest neighbors. We’ll start by assuming 
that agents play pure strategies. That is, an agent is either a cooperator 
who always cooperates, or a defector who always defects. Each time step, 
every agent plays a prisoner’s dilemma game with each of their four 
neighbors, and accumulates a payoff. Then, we have evolution. Every agent 
will consider their own payoff and the payoff of their neighbors. If any of 
them have a higher payoff than they do, it adopts the strategy of the 
neighbor with the highest payoff. 

This is an extremely simplistic view of both social behavior, structure, and 
evolution (be it cultural or genetic). Starting with simple models is a good 
thing. It gives us a place to start. In general, it’s good to remember this 
about modeling: the baseline model will often be extremely, stupidly 
simplistic. But simple models can give us insight, including insight into the 
sort of additional complexity we might or might not need to make sense of 
our systems, as long as we don’t forget that we’ve made those critical 
simplifications. And as I hope this course continues to demonstrate, it’s not 
always often how an apparently simple system will behave. 

SETTING UP THE MODEL
 init-coop-freq slider
 payoff-benefit slider (fix at b = 1), since important thing is ration b/c. 
 payoff-cost slider (between 0 and 1)
 turtles-own [strategy, payoff] 

o strategy = 0 for defector, 1 for cooperator. 
o We can use integers rather than a Boolean switch to allow for 

more than two strategies in future versions. 
INITIALIZATION

 Each patch of the grid will sprout a turtle. With prob init-coop-freq, 
make a cooperator, otherwise a defector. Cooperators are blue, 
defectors are red. 

DYNAMICS
 Stop if one strategy completely disappears from the population. 
 ASK TURTLES:

o Consider my own strategy and that of my neighbors. 
o Calculate my payoff from all four games

 ASK TURTLES: 
o Compare my payoff to those of my neighbors



o Copy the strategy of the neighbor with the highest payoff if its 
higher than mine. 

PLOTTING: 
 Agents’ colors will represent their strategies, and we can see the 

change happen on that level. Also plot the frequency of cooperative 
strategies in the population over time. 

RESULTS
 Let’s start with c = .2 (b = 1), and an initial population of 50% 

cooperators and 50% defectors in random locations. Cooperators 
dominate, with a few defectors remaining! Perhaps this isn’t such a 
dilemma after all? What’s going on? 

 Consider the case of c = .2 a bit more carefully. Notice in a time course
of a single simulation, the frequency of cooperation first goes down 
and then up. Let’s look at this more slowly by clicking go-once. 
Defectors can increase rapidly when cooperators are scattered. A lone 
cooperator receives no benefits and pays large costs. However, by 
chance, some cooperators will next to a few other cooperators. And in 
these cases, the benefits they receive may outweigh the costs they 
pay. And so places where cooperators assort initially by chance can 
survive and grow. 

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8



 As we start increasing the cost of cooperation, we reach a threshold, 
above which cooperation collapses. If we start with a mixed population,
cooperators increase in frequency if c < b/4. If c ≥ b/4, defectors 
increase in frequency. To illustrate how stark this result is, I ran ten 
simulations for 100 time steps each for values of c between .01 and .5 
in increments of .01. In this plot, the dots are the individual runs, and 
the line is their average. We see there’s a sudden chance in outcomes 
right at c = .25. Why does this happen? 
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 In this particular model, each agent plays with four neighbors. We 
already know that one act of mutual cooperation cannot outperform 
one act of exploitation. What about two acts of mutual cooperation? 
Consider a cooperator with just two other cooperators as neighbors. Its
payoff is 2b – 4c. A nearby defector who interacts with one cooperator 
has a payoff of b. Cooperators will therefore spread when 2b – 4c > b, 
or when c < b/4, and our simulations reflect this. 

 When the cost c is above this threshold, cooperation declines, but does
not vanish entirely. Some cooperators usually stick around as long as c 



< b/2, but above that threshold, cooperators go to zero always. Why? 
In our model, a cooperator can receive at most four acts of mutual 
cooperation, if all its neighbors are cooperators. When is even this not 
enough? Consider a single unit of four cooperators. The center 
cooperator gets a payoff of 4b – 4c.  A nearby defector can interact 
with two of those cooperators, and get a payoff of 2b. So, the 
cooperator formation is stable as long as 4b – 4c > 2b, or as long as c 
< b/2.  

So, cooperation can do quite well if the cost isn’t too high relative to the 
benefit, and there’s sufficient assortment. We can see that there are limits to
this if we consider invasion of just a few scattered cooperators (say, 5%). In 
this case, cooperation rarely increases, because there is not enough initial 
assortment. 

In general, our assumption of assortment is very strong. We have assumed 
that social networks are very rigid and never change. Let’s challenge this 
assumption with a simple extension. 

Reducing assortment

CODE: PD_randomized.nlogo

In our first model, agents interacted with neighbors in a fixed network 
structure. Your neighbors at the start of a simulation are your neighbors 
forever (or their offspring are your offsprings’ neighbors, if we are thinking 
about genetic evolution – the phenomenon of offspring remaining close to 
home is called limited dispersal). Let’s relax that assumption. We’ll do this by
introducing probabilistic randomization. That is, each time step, every agent 
has a probability of switching its spatial position with a randomly selected 
agent, thereby disrupting the spatial assortment that can emerge as we saw 
before. 

SETTING UP THE MODEL



 Add randomization-prob slider

INITIALIZATION
 Each patch of the grid will sprout a turtle. With probability init-coop-

freq, make a cooperator, otherwise a defector. Cooperators are blue, 
defectors are red. 

DYNAMICS
 Stop if one strategy completely dominates. 
 ASK TURTLES:

o With probability randomization-prob, switch spatial 
location with another randomly selected agent. 

 ASK TURTLES:
o Consider my own strategy and that of my neighbors. 
o Calculate my payoff from all four games

 ASK TURTLES: 
o Compare my payoff to those of my neighbors
o Copy the strategy of the neighbor with the highest payoff if its 

higher than mine. 

RESULTS
 Adding random assortment decreases the amount of cooperation that 

can be maintained in the population, and also makes it more variable 
over time – it sort of oscillates. Adding just a bit of randomness is 
enough to drive cooperation to extinction. Here is a plot with 20 
simulations for 200 time steps each for values of randomization-prob 
between 0 and .1 in increments of .01 (c = .2, init-coop-freq = .5). We 
can see that with only a bit of randomization, cooperation suffers 
greatly, and past a point can’t be maintained at all. 
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 This is a problem, because in many real world cases, cooperative 
partnerships cannot be fully exclusive, especially in the case of the 
gregarious human. We interact with lots of people, many of whom 
could easily take advantage of us if we are just naively altruistic, giving
our time and resources to anyone we meet. 

 To recap, naïve cooperation can invade and be maintained in the 
population is the costs of cooperation aren’t too high and there is very 
strong assortment across generations. However, these conditions are 
not likely to be met often, especially for humans who interact with a 
wide range of others. So next, let’s consider a scenario where there is 
an opportunity for cooperators to be a little more savvy. 

Reciprocity

CODE: PD_reciprocity.nlogo

In our previous models, we assumed that cooperative interactions occurred 
once per time step. This is fine if we are only considering pure strategies, 
since their performance in one round of game play will be the same as in 
many. But what if interactions between players don’t occur just once, but 
several times, and we consider contingent strategies, in which individuals 
have the opportunity to update their behavior based on what happened in 
previous rounds? 

Now our game has shifted to the iterated prisoner’s dilemma (IPD) 
game, which just means that pairs of players play multiple rounds of the 
game. We will introduce a new contingent strategy: Tit-for-tat.  

Tit-for-tat (TFT) agents are cooperative but responsive. They don’t like being 
exploited. TFT always starts out cooperating, but thereafter copies its 
coplayers last move. So it will happily continue to cooperate against another 
cooperator, but will only cooperate with a defector once (unless the defector 
switches tactics and starts to cooperate). Here’s where the importance of the
iterated game comes into play. If we only play once, then TFT does no better 
than a pure cooperator, since by the time it’s ready to respond, the game is 
over. When the same pairing has multiple opportunities to cooperate, 
however, TFT is only exploited once, thereafter preferring mutual defection 
to being played for a sucker. We will need to update our model to account for
multiple rounds of game play, but this is easily accomplished. Let’s see how 
TFT fares. 

CODING THE MODEL
 Add switch TFT? to convert our pure cooperators into TFT agents



 Add num-iterations slider, controlling for how many rounds each game 
is played.

INITIALIZATION
 Each patch of the grid will sprout a turtle. With probability init-coop-

freq, make a cooperator, otherwise a defector. Pure cooperators are 
blue, TFT agents are green, defectors are red. 

DYNAMICS
 Stop if one strategy completely dominates. 
 ASK TURTLES:

o With probability randomization-prob, switch spatial location with 
another randomly selected agent. 

 ASK TURTLES:
o Consider my own strategy and that of my neighbors. 
o Calculate my payoff from all four games
o Account for number of iterations when TFT agents are 

involved
 ASK TURTLES: 

o Compare my payoff to those of my neighbors
o Copy the strategy of the neighbor with the highest payoff if its 

higher than mine. 

RESULTS
 First, we note that if the number of iterations is one, the model is 

exactly equivalent to the one with pure strategies, since TFT doesn’t 
get the opportunity to respond to its opponent. 

 Now, let’s increase the number of iterations. Let’s say four. Start with 
spatial assortment, and c = .25. This is where pure cooperators got 
into trouble. Yet TFT not only outperforms defectors, it totally 



dominates. Now let’s crank up the cost, all the way to c = .6. 
Remember, at this point, pure cooperation is toast. Not TFT! It 
dominates again. 

 But so far we’ve assumed very strong assortment, so cooperative 
clusters can persist. For illustration purposes, let’s turn the 
randomization-prob all the way up to 1, so there is no longer ANY 
persistent spatial assortment across generations. No problem! TFT still 
wins, because when it interacts with cooperators it can take advantage
of the situation, but still avoids getting exploited too badly by 
defectors. TFT can handle much higher amounts of randomization, 
because it can capitalize when it gets paired with cooperators and pays
only minimally when it gets paired with a defector.

 If we continue to increase the costs, we do get to a point where TFT 
does better with less randomization – there are still benefits to 
cooperation. Consider c = .7. TFT persists in a mixed equilibrium for 
num-iterations = 4 and no randomization, but loses out as the 
randomization is turned up a bit. 

 TFT can also invade with less initial assortment than pure cooperators, 
because it doesn’t get exploited. Let’s consider the case where num-
iterations = 4, c = .3, init-coop-freq = 0.05, and randomization-prob = 
0.1. Under these conditions, ALLC would get creamed. However, even 
though TFT agents rarely find each other, as long as they do 
occasionally, the benefits of their repeated interactions still outweigh 
the costs of being exploited occasionally.  

 In general, though, TFT is a lot more robust than ALLC, and can permit 
the persistence of cooperation under greater costs and lower 
assortment, as long as interactions persist long enough so that there is
ample opportunity for reciprocal cooperation. It’s OK to occasionally be
exploited if you can subsequently ignore exploiters but continue to 
interact with other savvy cooperators.  

Further directions
 Diving deeper. There is a vast, vast amount of work modeling 

cooperation, much of it focusing on solving the prisoner’s dilemma. 
There is also a lot of empirical work, both in humans and non-human 
animals. It’s a very rich literature. The research on cooperation and 
assortment that the first part of this lesson is based on originally dates 
to W. D. Hamilton’s work in the 1960s (Hamilton 1964), who discussed 
genetic relatedness as an important mechanism for generating 
assortment. The work on reciprocity stems from two seminal papers, 
one by Trivers (1971) and the other by Axelrod and Hamilton (1981). A 
lot of research on cooperation explores various mechanisms for 
assortment, which also includes work on group structure, network 
structure, movement strategies, environmental harshness, and 



reputational management (cooperating with those who have a 
reputation for cooperating, sometimes called indirect reciprocity). 

o Trivers RL (1971) The evolution of reciprocal altruism
o Axelrod R (1997) The complexity of cooperation: Agent-based 

models of competition and collaboration. Princeton University 
Press. 

o Nowak MA, Sigmund K (2005) Evolution of indirect reciprocity. 
Nature 437: 1291–1298. 

o Smaldino PE, Schank JC, McElreath R (2013) Increased costs of 
cooperation help cooperators in the long run. American 
Naturalist 181: 451–463. 

 Cooperation in larger groups. Our model focused on cooperation 
between just two individuals. However, cooperation sometimes 
involves larger groups. A related game, called the public goods game, 
is a sort of N-person prisoner’s dilemma game for arbitrarily large 
groups.  When cooperation involves groups of more than two people, it 
turns out that reciprocity doesn’t work that well as a strategy, partly 
because defectors can free ride on the efforts of the majority.  This 
may be one of the reason that altruistic behavior is rarely observed in 
large, unrelated groups in non-human animals. To get cooperation in 
large groups, something more is needed. Analyses of this game have 
considered the importance of psychological and institutional 
mechanisms like conformity, reputation, punishment, and policing.  

o Simon HA (1990) A mechanism for social selection and 
successful altruism. Science 250: 1665–1668.

o Boyd R, Richerson PJ (1992) Punishment allows the evolution of 
cooperation (or anything else) in sizable groups. Ethology and 
Sociobiology 13: 171–195.

o Henrich J, Boyd R (2001) Why people punish defectors: Weak 
conformist transmission can stabilize costly enforcement of 
norms in cooperative dilemmas. Journal of Theoretical Biology 
208: 79-89. 

o Hooper PL, Kaplan HS, Boone JL (2010) A theory of leadership in 
human cooperative groups. Journal of Theoretical Biology 265: 
633–646.

o Smaldino PE, Lubell M (2014) Institutions and cooperation in an 
ecology of games. Artificial Life 20: 207–221.

 Cooperation and competition. There are many other issues relevant to 
cooperation other than simply avoiding or punishing free riders. Group 
boundaries and markers can help identify individuals identify certain 
individuals to cooperate with or avoid, for better or worse. Cooperation 
is also part and parcel with intergroup conflict, and conflict may 
actually drive cooperation, as more cooperative groups will be better 
able to compete. Because cooperation is such a core part of human 



societies, there are many important avenues for research, including 
many untapped or barely explored ones. 

o Hammond RA, Axelrod R (2006) The evolution of ethnocentrism. 
Journal of Conflict Resolution 50: 926–936.

o Choi J-K, Bowles S (2007) The coevolution of parochial altruism 
and war. Science 318: 636. 

o Makowsky MD, Smaldino PE (2016) The evolution of power and 
the divergence of cooperative norms. Journal of Economic 
Behavior & Organization 126: 75–88.

o Waring TM, Goff SH, Smaldino PE (2017) The coevolution of 
economic institutions and sustainable consumption via cultural 
group selection. Ecological Economics 131: 524–532. 

Exercises
 There’s a million games they haven’t run. Using simulations, can you 

establish a relationship between payoff-cost and num-interations for 
the evolution of TFT cooperators? Assume that TFT agents are initially 
10% of the population, and there is no network assortment 
(randomization-prob = 1). What is your general conclusion? (If you 
want a hint, check out the mathematical proofs in Axelrod and 
Hamilton 1981, which explore this question). 

 Making mistakes. Sometimes sometime might intend to cooperate, but 
nevertheless fail to do so. For example, you might intend to drive your 
friend to the airport, but you mark the wrong date on your calendar 
and oversleep. Introduce implementation error into the model. Add a 
variable called error-prob that affects TFT agents: with some 
probability, any given act of cooperation can change to a defection. 
Recall that TFT starts out cooperating, and thereafter copies its co-
player’s previous move. This will involve a careful consideration of the 
code. Explore how error disrupts the success of TFT considerably. 
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