
Unit 2: Contagion
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What is contagion? 
Things spread from one person to another. Diseases for sure, but also 
information, behaviors, and technologies. Your friends buy a new kitchen 
appliance, and you buy the same one the next week. Your cousin starts doing
hot yoga, and you find yourself at a Bikram studio a few days later. What  
does this look like from a dynamical perspective? What is the time course of 
adoption? 

In 1962, the first edition of Everett Rogers’ now-classic book, The Diffusion of
Innovations was published. Rogers studied how various innovations were 
adopted, everything from hybrid seed corn among Midwest farmers to the 
adoption of ham radio among tech enthusiasts to the adoption of new ideas 
among French intellectuals. and found that most of them exhibited a 
sigmoidal or S-shaped relationship of cumulative adoption over time. That is, 
adoption increase slowly at first, then increased rapidly, then slowed down 
again. What explains this apparently universal pattern of adoption? 

Time

Cumulative adoption

Density of new adopters

A simple model: spontaneous adoption  

CODE: contagion_spontaneous.nlogo



We’re going to assign each agent one of two possible states: infected or not. 
This terminology is taken from the idea of disease contagion, but it can be 
applied to the adoption of products or behaviors if you think of “infected” as 
simply indicating that the agent has adopted whatever it is. Agents will move
around in space. Sometimes, an uninfected agent becomes infected. This 
can be thought of in several ways. We could be talking about a literal disease
infection. But we could also be talking about the adoption of an idea, a 
behavior, or a product. Now, if there’s no way for an agent to become 
uninfected (and we’ll consider that later one), then obviously this model is 
always going to end up with the whole population infected. However, exactly 
how that happens isn’t necessarily obvious. We’ll focus here on what the 
model predicts about the temporal dynamics of infection. 

Let’s assume that at the beginning, a few agents introduce the behavior into 
the population. After that, each individual has a fixed probability of adopting 
it at any given time. We can do this by introducing a new variable called 
spontaneous-infect, the probability of adopting the behavior at each time. 
What we’re really assuming here is that agents all have the same 
information and the same psychology – the same proclivity for adoption. 
What we’ll looking for, then, is the dynamic pattern of how they adopt over 
time.

Let’s take the simple model of agent movement we built at the end of the 
last lecture, in which we have a bunch of circular agents moving randomly in 
space. We’ll get rid of the pens, but keep the rest. In that model, the agents 
didn’t really do much. We’re going to change that here. 

For each component of the model description below, follow along by looking 
at the provided code to see how it each part is implemented. 

SETTING UP THE MODEL
 Create a new slider for the probability of spontaneous adoption, 

spontaneous-infect, which can vary between 0 and 1. 
 In the code window, give each turtle their own parameter (i.e., a 

turtles-own variable) called infected?, which simply indicates whether 
the agent is infected. The question mark indicates that it’s a Boolean 
variable, this is a NetLogo convention. 

INITIALIZATION
 Create N turtles. Place them randomly in 2-D space. 
 Infect some of them.

DYNAMICS



 Stop simulation is everyone or no one is infected. 
 ASK TURTLES: Become infected with probability spontaneous-infect.
 ASK TURTLES: Move. 

PLOTTING: 
 We will plot the number of infected agents over time. NetLogo makes 

creating this sort of plot very easy. 

RESULTS 
 If everyone has the same information and the same psychology – the 

same proclivity for adoption – what do we get? An r-shaped curve of 
asymptotic growth, in which the rate of adoption is maximal at first 
and then slows as there are increasingly few individuals who haven’t 
yet adopted. 

 This is definitely  not the S-shaped adoption curve we see empirically. 
So we can confidently say that innovations don’t diffuse this way, with 
everyone having the same proclivity for adoption and the same 
information. What would give us those S-shaped curves?  

Rogers knew back in 1962 that an explanatory theory required something 
more than the assumption that there was one type of person, all responding 
to the same information. His proposal solution was based primarily on 
individual differences: that individuals differ in their proclivity for adoption. In
addition to a small set of initial innovators, he partitions the population into 
the early adopters, early majority, late majority, and laggards. To make this 
taxonomy work, he also had to posit very specific proportions of the 
population that fall into each category. Which works in terms of when they 
adopt, but it assumes an awful lot about why people adopt and why those 
differences might occur, much of which is not really justified by what we 
know about humans. Of course, there might be some truth to it – there are 
certainly differences between individuals. But there’s also a simpler 
explanation that can explain the S-shaped adoption curve. 



A model of social influence

CODE: Contagion_SI.nlogo

What if, instead of positing a very specific distribution of proclivities for 
adoption, one which has questionable support based on what is known about
human psychology, we instead return to our original model in which 
everyone has pretty much the same proclivity to adopt. Wait a minute, you 
say, we already showed that wouldn’t work. Ah, but the other assumption 
our first model made was that all individuals had access to the same 
information. What if that assumption no longer held? 

This model was first introduced by Frank Bass in 1969, just a few years after 
the first edition of Rogers’ book was published. What if, Bass proposed, 
innovations spread sort of like diseases? What if every exposure carried 
some risk that this time, an individual would be convinced and adopt. 

So, let’s return to our model. Now the fact that the agents are moving around
in space will matter. At every tick of the simulation clock, each agent will 
consider all the other agents around itself nearby. NetLogo allows us to easily
have an agent check all of the other agents within some radius. For each 
neighbor who has adopted the behavior, there is a fixed probability of 
adopting. This probability is the transmissibility of the behavior, similar to 
how contagious a disease is. 

Transmissibility. Figuring out exactly how to model this will require some 
mathematics of probability. Let τ  be the transmissibility, the probability of 



being influenced to adopt by someone who has already adopted. If there’s 
only one such neighbor, then we’re set: the probability of adopting is τ . 
However, what if there are multiple neighbors who have adopted? 
Probabilities aren’t additive, so we can’t just sum up the τ ’s. Instead, their 
multiplicative. But τ2  is less than τ , so that doesn’t make sense. Instead,
we can take a different tack: calculate the probability that the contagion 
doesn’t spread. With multiple neighbors adopting, we need the joint 
probability that all of them fail to transmit the contagion. Say there are three 
neighbors who have adopted. The probability of the contagion not spreading 
from any of neighbors is (1−τ ) (1−τ ) (1−τ )=(1−τ )3 . More generally, with n 
infected neighbors, the probability of the contagion not spreading is (1−τ )n .
So, the probability of spreading is simply the inverse: 1−(1−τ )n . 

SETTING UP THE MODEL
 Add transmissibility slider

INITIALIZATION
 Create N turtles. Place them randomly in 2-D space. 
 Infect some of them.

DYNAMICS
 ASK TURTLES: Count the number of infected neighbors. Become 

infected with a probability that depends on this number and on
the transmissibility of the contagion.

 ASK TURTLES: Move. 

RESULTS 
 So what happens when adoption spreads via direct social influence 

rather than by a fixed response to global information? In the beginning,
few agents have adopted, so most interactions will not lead to new 
adoptions. The rate of growth will be slow. As most agents adopt, the 
adoption rate will increase until a majority of agents have adopted. 
After this, adoption will slow down again since most interactions will be
between agents who have already adopted. In other words, we get our 
S-shaped curve. 



 Now, we’ve got a much simpler model that shows how the nature of 
social influence can generate sigmoid curves.

 Play around with the sliders on this model. It’s often valuable to simply 
play with a model to get a feel for the sort of dynamics that occur 
when we change the parameters. Even experiments where the results 
are obvious are valuable as a check to make sure your model is 
running as it should. For example, vary the transmissibility of the 
contagion. We can see that the infection spreads much faster when 
transmissibility is 0.1 than when it is 0.01! Obviously, innovations that 
are more intrinsically attractive will diffuse more rapidly through a 
population. Other factors are perhaps less obvious. 

 The fewer agents there are – the less dense the population – the fewer 
interactions will occur per unit time, and the longer it will take for the 
innovation to diffuse. This is perhaps counterintuitive. It might seem 
like the more people who need to adopt, the longer it will take. But if 
adoptions events are independent and rely on the density of social 
networks, then denser populations will adopt more rapidly. 

 Relatedly, the speed of diffusion depends on how much mixing goes on
– the rate at which adopters will interact with new people who haven’t 
yet adopted. We can use the speed and turning-angle parameters to 
control the contact rate and ultimately the speed of diffusion. 

The most important result is that the social influence model fits the data 
better than the spontaneous adoption model, and makes far fewer arbitrary 
assumptions than Rogers’ model. The model shows us how social influence 
and local interactions can give rise to a sigmoidal adoption curve. 

Recovery: The SIS model

Our model so far has assumed that once people are infected, or once they 
have adopted whatever product or behavior we’re talking about, that’s it. 
They always have it. That’s a pretty strong assumption. In terms of infection, 



sometimes people recover, and are no longer infected. In terms of products 
or behaviors, sometimes their use runs out or people decide they are no 
longer interested, and stop for a while. They might give it up forever, or they 
might simply take a hiatus. Let’s focus on the latter case. What happens if 
we let people recover (or disadopt), at which point they return to a state of 
susceptibility? We can do this by assuming that individuals who are infected 
recover with a fixed probability γ : the recovery rate. What sort of 
dynamics does this yield? Will everyone eventually recover?  

SETTING UP THE MODEL
 Add recovery-rate slider

INITIALIZATION
 Create N turtles. Place them randomly in 2-D space. 
 Infect some of them.

DYNAMICS
 ASK TURTLES: Count the number of infected neighbors. Become 

infected with a probability that depends on this number and on the 
transmissibility of the contagion.

 ASK INFECTED TURTLES: Recover with probability recovery-
rate.

 ASK TURTLES: Move. 

RESULTS
 So what happens? Does the contagion eventually fizzle out? Do we get 

wild oscillations? In most cases, no. Rather, the population settles to an
equilibrium where the rate of new infections equals the rate of 
recovery. Note that we can get the any particular equilibrium rate of 
infection for almost any level of transmissibility as long as the recovery
rate adjusts accordingly. 

 Movement -- the effective contact rate  -- decrease the equilibrium 
level of infection. Show this if we change speed from 0.5 to 0.1, and 
change the turning angle from 60 to 360, the equilibrium infection rate
goes way down. 



What’s the use of models like this? SIS models like this can be particularly 
useful when considering disease dynamics. If we have estimates about the 
contact rate of a population and the transmissibility and recovery rate of a 
disease, we can estimate the proportion of the population that needs to be 
vaccinated to prevent an infection from spreading. However, they can also 
be used for understand any behaviors that spread through social influence 
but aren’t necessarily permanent. For example, SIS models have been used 
to study health behaviors related to diet and exercise, as well as the spread 
of emotions or sentiments in social networks.

Further directions
 Transmission biases. We’ve assumed that individuals simply adopt 

behaviors from anyone they contact. But there may be good reasons 
for not doing so. In an uncertain environment, conformity to the 
majority behavior can be beneficial. If the value of behaviors is 
opaque, copying successful or prestigious individuals can be a good 
strategy. An extensive literature has considered the dynamics and 
evolutionary implications of various transmission biases, summarized 
in these papers: 

o Laland KN (2004) Social learning strategies. Learning & Behavior 
32: 4-14.

o Kendal RL et al. (2018) Social learning strategies: Bridge-building
between fields. Trends in Cognitive Sciences 22: 651-665.

o Smaldino et al. (2018) Sigmoidal acquisition curves are good 
indicators of conformist transmission. Scientific Reports 8: 
14015.



 Complex contagion. The SI(S) models assume the probability of 
adoption increases linearly with the number of exposures. But, as 
special sort of transmission bias, social behaviors might require 
reinforcement from multiple sources before they are adopted. Centola 
and colleagues have studied how behaviors spread in social networks 
and applied models creatively to generate hypotheses. 

o Centola D, Macy M (2007) Complex contagions and the weakness
of long ties. American Journal of Sociology 113: 702-734.

 Emotion contagion. Some researchers have used a modified SIS model 
to explore contagion of emotions or sentiments. That is, they have 
modeled how social interactions may cause particular feelings to 
spread on social networks. 

o Hill AL, Rand DG, Nowak MA, Christakis, NA (2010) Emotions as 
infectious diseases in a large social network: The SISa model. 
Proceedings of the Royal Society B 277: 3827–3835.

 Ingroup-bias and adoption. What happens if there is more than one 
social group, who view adoption by in-group and out-group members 
differently? There may be a bias to adopt a population product or 
behavior, but not if it’s popular primarily among members of the out-
group. We explore how such a bias can affect adoption dynamics and 
interacts with parameters influence group differences and population 
structure. 

o Smaldino PE et al. (2017) Adoption as a social marker: Innovation
diffusion with outgroup aversion. Journal of Mathematical 
Sociology 41: 26-45. 

Exercises
 Getting used to it. Plot equilibrium adoption in the SIS model as a 

function of recovery-rate for different values of transmissibility, 
turning-angle, and speed. Describe the relationship(s). 

 Vaccinate! Modify the SIS model so that a fixed proportion V of the 
population is vaccinated so they cannot be infected. Start with a single 
infection, and consider whether the infection spreads (and reaches an 
equilibrium) or dies out (so that no agents are infected any more). Run 
a small batch of runs to consider the proportion of runs for each 
parameter condition in which the contagion failed to spread, varying 
the transmissibility and recovery-rate for at least two values each for 
arbitrary movement parameters. What is the relationship between V, 
transmissibility, and recover-rate in whether an infection spreads? 

 Don’t copy those people. Consider how to extend the model to include 
two groups who both adopt the product via social influence (and 
maybe even spontaneously), but are inclined to dis-adopt if they 
perceive it to be overly represented in the outgroup. How might you 
modify the contagion models we covered to do this? 
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