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Model 1: Population Growth 

Narrative 
 
The first model, Population Growth, is a purposely simple model that introduces the Stella graphic 
model diagram (flow model) symbology and terminology, and also introduces the first online model 
interface. For the mathematically inclined, the model’s single mathematical equation is provided, 
although mathematical knowledge is not required to understand and run the model.  
 
However, in spite of its simplicity, the insight from this model is not trivial. Populations have an inherent 
tendency to rapidly expand even if this tendency cannot go on unmodified for long. Hence, however 
much complexity is added to population models, an exponential growth term is usually part of the 
equations—often the heart of them. 
 
Imagine a scenario in which a few human hunter-gatherer families stepping off a raft on a deserted but 
lush tropical island with unlimited food. This simple model examines how their population would quickly 
soar if there were no restraints. In reality, as Thomas Malthus suggested, an exponential growth would 
lead to humanity outstripping any food supply. 
 
Thomas Malthus (1766-1834) is considered by many to be the father of demography, the study of 
human populations—their size, composition, and distribution. Births, deaths, and migration are the 
primary drivers of population changes. He also much influenced ecologists and evolutionary biologists 
interested in population behavior more generally. For example, Charles Darwin’s idea of natural 
selection came to him while contemplating Malthus’ argument about the inevitability of environmental 
limits to population growth.  
 
Malthus gathered data on population growth from many countries and concluded that most populations 
were growing exponentially. Some populations were doubling almost every generation, so from one 
generation to the next it was growing at the rate of 1, 2, 4, 8, 16, …, a growth rate that is exponential. It 
is easy to mathematically model exponential growth.  
 
The basic biology of reproduction leads to exponential growth. Each pair of parents has children who in 
turn become parents. So long as each pair of parents on average has more than two offspring who 
survive to become parents, the population will grow exponentially, if less than two, it will decline 
exponentially. In recent popular discourse, “exponentially” has come to be a synonym for “fast,” but 
that does not do justice to the mathematical insight that exponential processes accelerate or decelerate 
with time. If the number of offspring is only slightly more than two, exponential growth will be very slow 
for a long time, but eventually take off toward infinity like a rocket. 
 
On the other hand, Malthus suggested that consumable resources (food) was only growing at a rate of 
1, 2, 3, 4, 5, …, a growth rate that is linear (constant) rather than increasing with time. His point was that 
even if a linear growth rate is at first much faster than an exponential one, eventually an accelerating 
exponential rate will catch up and then exceed the linear one.   
 
In 1798 Malthus published his population growth data on a number of countries along with his theory as 
an anonymous book, An Essay on the Principle of Population, with a subtitle As it Affects the Future 
Improvement of Society. The inspiration for his book came from the clash between his data (rapidly 
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rising populations) and the optimistic views about the future “perfection” of humanity held by Rousseau 
and others. Malthus was soon identified as the author, and the book quickly sold out amid great 
controversy.  A second edition of Malthus’ book came out in 1803, and a final, sixth edition in 1826. 
 
Malthus maintained that an exponentially growing population would, inevitably, lead to a rising supply 
of labor which, in turn, would result in lower wages. He knew that this had, in fact, happened in the 
past. In the aftermath of the Black Death in the 14th century, the labor supply contracted sharply in 
Britain. Wages rose and farm tenancies went begging, depressing rents. But rapid population increase in 
only a few generations quickly made up the deficit. Wages fell, rents rose, and the working classes’ 
standard of living went down.  
 
Malthus proposed two solutions to this problem. One was to decrease the birth rate through late 
marriage and abstinence. He knew that there were practices besides abstinence to avoid pregnancy, but 
he considered these sinful. If the birth rate did not reduce sufficiently, Malthus suggested rather 
graphically, that the second solution—an increased death rate—would be inevitable. 
 

The power of population is so superior to the power of the earth to produce subsistence for man, that 
premature death must in some shape or other visit the human race. The vices of mankind are active and 
able ministers of depopulation. They are the precursors in the great army of destruction, and often 
finish the dreadful work themselves. But should they fail in this war of extermination, sickly seasons, 
epidemics, pestilence, and plague advance in terrific array, and sweep off their thousands and tens of 
thousands. Should success be still incomplete, gigantic inevitable famine stalks in the rear, and with one 
mighty blow levels the population with the food of the world. 

 
Malthus suggested that providing welfare to the poor (via the somewhat humane Poor Laws then in 
effect in England) would, in the long run, only make matters worse for the lower class. The business 
oriented Whig party liked Malthus’s suggestion and eventually passed a law that stipulated that no poor 
person was to receive any money or help unless they labored in a workhouse. By purposely making the 
food and living conditions in the workhouses quite terrible and the pay lower than the pay offered 
anywhere else, the poor would try hard to obtain gainful employment elsewhere. In practice, many 
people starved rather than go to a workhouse, so the workhouses were, in a grotesque way, effective. 
They also provided a very low-cost source of near slave labor and created the conditions reported on so 
effectively by Charles Dickens. In A Christmas Carol, Dickens has Scrooge say: 
 

I don't make merry myself at Christmas and I can't afford to make idle people merry. I help to support 
the establishments [the workhouses] I have mentioned: they cost enough: and those who are badly off 
must go there. Many can't go there; and many would rather die. If they would rather die,'' said Scrooge, 
"they had better do it, and decrease the surplus population. 
 

The idea that the poor need to be driven to work by the threat of hard want has not entirely 
disappeared since Dickens’ day! 
 
Malthus was an important pioneer. His model is extremely simple, but it captures a basic bit of biological 
reality. In the two centuries since Malthus, ecologists and demographers have added new elements to 
his model of exponential growth, but, as you will see in the following models, it still lives inside 
successor models in one form or another. 
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As mentioned in the Introduction, one can learn a lot about how models behave just by running them. If 
you would like to drive a model and skip looking under the hood first, go directly to Black Box Model 
below. You can always come back to this point and visit the sausage factory. 

Further Reading 
 
Lindert, P. H. (1985). "English population, wages, and prices:1541-1913." Journal of Interdisciplinary 

History 15: 609-634. 
https://en.wikipedia.org/wiki/Thomas_Robert_Malthus    
https://en.wikipedia.org/wiki/Exponential_growth  
https://en.wikipedia.org/wiki/System_dynamics  
 

White Box Graphical Model 
 
While you can learn how simulation models behave just by running them as black box, just as you can 
learn how cars behave by just driving them, additional insights about models are gained when you first 
look at a model’s visual diagrams, i.e., when you look inside the white box or under the hood. Also, if 
you plan on eventually building your own models, exploring the details of existing models will provide 
you with a helpful background.  
 
This section introduces you to the conventions of the Stella simulation engine. Once you master these 
conventions you will find that you can understand the structure of quite complex models from either 
the Stella graphical representation or the mathematical equations. Some people find the visual 
representation easier to follow than the abstract equations. Equations were invented to make algebra 
easier, but since we are not going to require you to do any algebra, they are not essential for this 
module. If you are interested in modifying the models we present here, you can use values listed in the 
Stella graphical interface table to assist you, or you can use the equations in conjunction with other 
simulation engines you may already know how to use. 
  

 

 
Figure 1: Population Growth model diagram. 

 

https://en.wikipedia.org/wiki/Thomas_Robert_Malthus
https://en.wikipedia.org/wiki/Exponential_growth
https://en.wikipedia.org/wiki/System_dynamics
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The components in the population model shown above are as follows: 
 

 
 
The rectangular box is the stock, which is some quantity that is accumulated or lost over time. In this 
case it is the number of people, i.e., the population. You can think of it as a tank or bathtub that can 
have different levels of water over time depending on how much water is flowing in and flowing out.  
The number of people (or water level) depends on the past history of both the inflow and outflow.  Not 
shown in the model, but assumed, is that there is some initial value assigned to the number of people 
(or gallons of water) in the stock box (the water tank). 
 

 
 
The “cloud,” the “faucet,” and double line represent the “flow” into the stock (tank).  The cloud is the 
source of the potential people, assumed of infinite size (the model will never run out of a source of new 
people). The faucet (or valve) controls the flow of the people from the source to the stock. The wide 
arrow at the end of the flow indicates the allowed direction of the flow (just into the stock in this case).  
 
 

 
 
A connector, which has a small circle on one end and an arrow on the other end, shows a flow of 
information which denotes action, with the arrow providing a cause and effect direction. The small 
arrows pointing at the valve (above), for instance, are information flows that control the setting of the 
valve. Not only does the valve regulate (meter) the flow, but it does so based on one or more 
information inputs. In the case of multiple inputs, the valve will always include some simple arithmetic 
function such as multiplication that is performed on the inputs to control the flow. 
 

 
Green circles, which only have an output and no inputs, are simply the input setting of some parameter 
value to the model, i.e., some independent variable. These values, which the model user is able to 
change, are entered via the black box interface sliders. 
 

 
 
Finally, mauve circles, which have both inputs and outputs, are converters where some simple 
arithmetic function such as multiplication is performed on the inputs to produce the output. The simple 
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population model does not have a converter. However, the valves, described above, also function as 
converters. The output of a converter (or valve) is sometimes called an “intermediate variable” because 
it is between the independent variable model inputs and the final model outputs, the dependent 
variables (the results, i.e., the plots of the dependent variables versus time).  
 
In some ways, intermediate variables break up the model into more easily understood chunks, but in the 
process, they also complicate the model. While intermediate variables are almost always included in 
Stella models, they are rarely used in pure mathematical representations—considered an unnecessary 
complication. If one starts with a set of equations that include intermediate variables, one can eliminate 
them via successive substitution, ending up with equations that only include independent and 
dependent variables. 
 

Model Variables and Equations 
 
The Population Growth visual flow diagram “white box” model can be reduced to a set of initial 
conditions and independent (and intermediate) variables which, through mathematical relationships 
(equations) provide the results (the independent variables). 
 

Variable Units  Model Equation 

HUMAN POPULATION (L) People L(t) = L(t-dt) + (b-d)dt 

Human Birth Fraction (z) 1/year  

Human Death Fraction (u) 1/year  

human birth rate (b) People/year b = zL 

human death rate (d) People/year d = uL  
 

Table 1-2: Model equations. 
 

The table provides, for the Population Growth model, the units and equation (where appropriate) of the 
DEPENDENT VARIABLE (result), the Independent Variables that can be set by the model user, and the 
intermediate variables that establish relationships. 
 
The basic model equation is: L(t) = L(t-dt) + (b-d) dt 
 
Where: 
L(t) is the human population (units of people) at some time t  
L(t-dt) is the human population at some slightly earlier time (t-dt), where dt is a small increment of time 
b and d are the birth and death rates in units of people/year. 
 
When (b-d) in people/year is multiplied by time dt in years, the result (units) is people, the number of 
people to be added to or subtracted from the total HUMAN POPULATION (L) for the increment of time dt.  
 
However, b and d are intermediate variables which are calculated from independent variables, so we 
need two additional equations to make these calculations: b = zL and d = uL, where z and u are the 
human birth and death fractions of all the people that are born or die in a population in one year. The 
units for this are people (who are born or die)/people (total population)/year, or simply 1/year. 
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We can now replace the intermediate variables, b and d, with the independent variables, z and u, to 
come up with the equation we are really looking for, one that relates the dependent (output) variable to 
the independent (input) variables: 
 
L(t) = L(t-dt) + (zL–uL) dt 

 

or, collecting terms, 

L(t) = L(t-dt) + (z–u)L dt 

 

While this provides us with the value of the independent variable, L, at time t, given that we have the 

value of L at (t-dt), what we really want is the value of L at time t without having to know the value at an 

earlier time. To do this we need to run the simulation or perform the mathematical equivalent, i.e., 

make the integration:  

 

L(t) = L0 + ∫ (z–u)L dt 

 

Where  

L0 is the initial population at the start, t = 0 

∫ stands for the integral from t = 0 to the present (t) 

 

For most dynamic system models, a numerical integration with either a computer or a room full of 

computer ladies with calculators is required to calculate L(t). However, for very simple models like this 

one, an analytic solution exists.  In this case the solution is: 

 
dL/dt = (z-u)L   and hence 
 
L(t) = L0e(z-u)t  where e is the base of the natural logarithms 
 

Black Box Model 
 
As suggested in the course Introduction, when using a black box model, one is just concerned with the 
model’s inputs, not its internal workings which can be extraordinarily complex. To run the Population 
Growth model from this black box perspective, bring it up at  
 
 
https://exchange.iseesystems.com/public/cherylgenet/population-growth 
 
 
This is what you should get: 
 

https://exchange.iseesystems.com/public/cherylgenet/population-growth
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Figure 2: Initial model before running. 

 
Your model has five controls.  These are: 

• Human Population (millions) knob (initial condition) 

• Human Birth Fraction slider (independent variable) 

• Human Death Fraction slider (Independent variable) 

• Run button 

• Clear Graphs button. 
 

 Min Max Increment Reset 

HUMAN POPULATION (L) 0 300 1 10.0 

Human Birth Fraction (z) 0 0.05 0.001 0.02 

Human Death Fraction (u) 0 0.05 0.001 0.01 

     

                OUTPUT GRAPHS     

HUMAN POPULATION (L)  0 500   

years (t)  0 500   
 

Table 1-1: The simulator settings for Model 1: Population Growth 
 
Each simulator control has a minimum and maximum value. These values cannot be changed by the 
model user and have been set by the model designers to allow the model to be exercised over a useful 
range of values while avoiding extreme values that would be unrealistic.  
 
In considering how populations grow (or shrink), demographers employ birth rates and death rates. A 
birth rate is defined as the number of births per 1000 individuals per year in the population. The 
“individuals” include all women and men of all ages—everyone.  The “per 1000” provides a number 
larger than 1 instead of a fraction.  The birth fraction (used in this Stella model) is the number of births 
per individual per year and is thus 1000 times smaller than the birth rate. The death fraction is, similarly, 
the number of deaths per individual per year. 
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When the Population Growth Model comes up it will have these default settings (as shown in the table 
above):  
 
HUMAN POPULATION (L) = 10 
Human Birth Fraction (z) = 0.02 
Human Death Fraction (u) = 0.01    
 
Now click the Run button and watch the output screen as the computer calculates the increasing 
population over time and plots out blue curve 1. 
 

 
Figure 1-3: Simulation results. 

 
Note that the population, besides increasing as time goes by, is increasing faster and faster, i.e. 
population growth is accelerating. The reason for this is that, in the model, the human birth rate (b) is a 
function of both the Human Birth Fraction (z) and the HUMAN POPULATION (L). Mathematically, b = zL. 
Thus, as the population gets larger, the number of births keeps going up, the birth valve keeps getting 
opened wider and wider. Infinity here we come! 
 

Questions: 
What was the initial population? Easy, just look at the table above: 10 
What was the population after 100 years? To find this, put your cursor on the graph and hold down the left 

button. Move the vertical line until Years = 100. Right below that is 27, the population in Year 100. 
Was the birth fraction greater than the death fraction? Yes, just look at either the default table or the 

values on the two independent variable sliders, Human Birth Fraction (z) = 0.020 and Human Death 
Fraction (u) = 0.010. 

How long did it take the population to double? Hold down the left mouse button. At Year 0 it reads 10. 
Now move the mouse-controlled vertical line to the right until the population just clicks to 20 and 
read below Year for the answer: ~70 years (answer can vary by a year or two).  
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Leaving all other controls alone, decrease the Human Death Fraction (u) until it reads 0.00, and then 
click Run.   
 
With a smaller death fraction, the population increased even faster over time.  
Question: Did the population change the way you expected it to before you pushed the Run button? 
 
Now create a different scenario. Start with a large number of natives arriving on the deserted island and 
a death fraction that is larger than the birth fraction. What do you expect the results curve will look like? 
Now push Run and see what you get. 
 
The shape of the curve reflects that when the population is the largest, the most people will die, but 
as the population falls, less people will be dying. According to the model, the population will never 
quite get to zero until time approaches infinity, although we know that in reality, once the 
population drops below two people the game is over. Our model is not exactly true, but it is useful 
approximation for many purposes. This is a good example of the expression that “all models are 
wrong, but some are useful.” 
 
Now decrease the Human Birth Fraction (z) until it exactly matches the Human Death Fraction (u) and click 
Run. Questions: What kind of output curve did you get? Was it what you expected? What do you think 
would happen, in the long run, if you made just a tiny change in either the birth rate or the death rate? 
 

Exercises: 
Given a HUMAN POPULATION (L) of 10 can you, by adjusting the sliders via trial and error, find a 
combination of Human Birth Fraction (z) and Human Death Fraction (u) that will increase the population 
by a factor of ~ 40 in 200 years? Answer: Yes you can, but note that your answer will not be unique.  

Conclusions 
 
In the simple Malthusian population model, if the birth rate exceeds the death rate then, sooner or 
later, the population will take off and head toward infinity, blowing up the model. On the other hand, if 
the death rate exceeds the birth rate, eventually everyone dies, and the population drops to zero and 
stays there. Finally, if the birth and death rates are exactly equal, the population will stay the same, but 
this is an unstable equilibrium because the slightest change in either the birth rate or death rate will 
eventually cause the population to head toward infinity or zero. 

Appendix / Stella Top-Level Model Code  
 
A Stella model is created by connecting the graphical elements and entering information in the Stella 
interface. Once everything is connected and entered, Stella automatically creates the “top level code” 
which is shown below for Model 1. This code provides a good check on whether or not the Stella model 
is what you really intended, and can be useful in trouble shooting models that are not providing 
reasonable results or do not seem to be working at all. 
 
Top-Level Model:  
L(t) = L(t - dt) + (b - d) * dt 
    INIT L = 10 
    UNITS: Population 
    INFLOWS: 
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        b = L*z {UNIFLOW} 
            UNITS: Population/Years 
    OUTFLOWS: 
        d = L*u {UNIFLOW} 
            UNITS: Population/Years 
u = 0.01 
    UNITS: per year 
z = 0.02 
    UNITS: per year 
{ The model has 5 (5) variables (array expansion in parens). 
  In root model and 0 additional modules with 0 sectors. 
  Stocks: 1 (1) Flows: 2 (2) Converters: 2 (2) 
  Constants: 2 (2) Equations: 2 (2) Graphicals: 0 (0) 
  } 


